A generalized two-sweep shift splitting method for non-Hermitian positive definite linear systems
نویسندگان
چکیده
In this paper, based on the shift splitting of coefficient matrix, a generalized two-sweep (GTSS) method is introduced to solve non-Hermitian positive definite linear systems. Theoretical analysis shows that GTSS convergent unique solution systems under loose restriction iteration parameter. Numerical experiments are reported efficiency method.
منابع مشابه
Positive Definite and Semi-definite Splitting Methods for Non-hermitian Positive Definite Linear Systems
In this paper, we further generalize the technique for constructing the normal (or positive definite) and skew-Hermitian splitting iteration method for solving large sparse nonHermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove th...
متن کاملModified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems
Comparing the lopsided Hermitian/skew-Hermitian splitting (LHSS) method and Hermitian/skewHermitian splitting (HSS) method, a new criterion for choosing the above two methods is presented, which is better than that of Li, Huang and Liu [Modified Hermitian and skew-Hermitian splitting methods for nonHermitian positive-definite linear systems, Numer. Lin. Alg. Appl., 14 (2007): 217-235]. Key-Word...
متن کاملaccelerated normal and skew-hermitian splitting methods for positive definite linear systems
for solving large sparse non-hermitian positive definite linear equations, bai et al. proposed the hermitian and skew-hermitian splitting methods (hss). they recently generalized this technique to the normal and skew-hermitian splitting methods (nss). in this paper, we present an accelerated normal and skew-hermitian splitting methods (anss) which involve two parameters for the nss iteration. w...
متن کاملP-regular Splitting Iterative Methods for Non-hermitian Positive Definite Linear Systems
We study the convergence of P -regular splitting iterative methods for non-Hermitian positive definite linear systems. Our main result is that P -regular splittings of the form A = M−N , where N = N, are convergent. Natural examples of splittings satisfying the convergence conditions are constructed, and numerical experiments are performed to illustrate the convergence results obtained.
متن کاملBlock Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems
By further generalizing the concept of Hermitian (or normal) and skew-Hermitian splitting for a non-Hermitian and positive-definite matrix, we introduce a new splitting, called positive-definite and skew-Hermitian (PS) splitting, and then establish a class of positivedefinite and skew-Hermitian splitting (PSS) methods similar to the Hermitian (or normal) and skew-Hermitian splitting (HSS or NSS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasnik Matematicki
سال: 2022
ISSN: ['1846-7989', '0017-095X']
DOI: https://doi.org/10.3336/gm.57.1.10